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Abstract: In this study, two new integrated control charts, named T2-MAE chart and MS-MAE chart,
are introduced for monitoring the quality of a process when the mathematical form of nonlinear profile
model for quality measure is complicated and unable to be specified. The T2-MAE chart is composed of
two memoryless-type control charts and the MS-MAE chart is composed of one memory-type and one
memoryless-type control charts. The normality assumption of error terms in the nonlinear profile model
for both proposed control charts are extended to a generalized model. An intensive simulation study is
conducted to evaluate the performance of the T2-MAE and MS-MAE charts. Simulation results show that
the MS-MAE chart outperforms the T2-MAE chart with less false alarms during the Phase I monitoring.
Moreover, the MS-MAE chart is sensitive to different shifts on the model parameters and profile shape
during the Phase II monitoring. An example about the vertical density profile is used for illustration.

Keywords: cubic B-spline approximation; Hotelling T2 chart; maximum likelihood estimate; multivariate
exponentially weighted moving average; statistical process control

1. Introduction

Statistical process control (SPC) is the methodology for quality control using statistical methods
for monitoring the quality of a process. Because it can maintain the process to be operated efficiently,
produce more confirming products and reduce rework or scrap, SPC has been widely used to monitor
the quality of production processes to decline the variability among products and keep their quality
close to the desired level. It should also mention that the major tool, control charts, can be treated as a
visualization of statistical hypothesis testing. Engineers can use control charts to process data and identify
common-cause or assignable-cause variations during the production and distinguish between the process
in control and the problematic variation. If the variability is due to an assignable-cause, an out-of-control
signal will be flagged before large amount of nonconforming products produced. Therefore, engineers
can efficiently maintain the process stable through using SPC. Comprehensive demonstrations about
the fundamental to establish control charts and the applications of using control charts can be found in
Montgomery [1]. In many instances, the quality of a product can be expressed as a functional form of
explanatory variables. The SPC for monitoring functional form data is also named profile monitoring.
Recent advances in manufacturing have been proposed, the functional form under monitoring could be
complicated and contains a lot of unknown parameters. Multivariate control chart methods are efficient
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to simultaneously monitor the shift on the model parameters. Two concerns have been raised for using
a multivariate control chart to monitor a process. Multivariate control chart methods are usually less
sensitive to catch process shifts in Phase II monitoring if the data dimension is 10 or larger. Moreover,
parametric multivariate control charts, for example, the Hotelling T2 chart and multivariate exponentially
weighted moving average (MEWMA) chart, are sensitive to the violation of normality assumption. If the
random vectors of dependent variables do not follow a multivariate normal distribution, the false alarm
rate (FAR) is usually inflated and over the nominal level. The FAR in the Phase I monitoring of quality
control is also known as the type I error in statistical hypothesis testing methods. The EWMA-type control
chart is more sensitive to a small to moderate shift on the process parameter due to using memory-type
statistics to establish the control chart.

In profile monitoring, the parameters of interest are often the relationship between the response and
explanatory variables and the nature of the variance between and within the profiles. Multivariate control
charts are often unable to well monitor the relationship between the response and explanatory variables
and the autocorrelation between the observations. In many occasions, more than ten sampling points
per profile are measured as data and this fact makes the design for a multivariate control chart method
cumbersome. Most of the existing profile monitoring methods assume that the error terms follow a normal
distribution to develop the monitoring scheme. How to expand the normality assumption of error terms
to a generalized model is also an important issue for profile monitoring.

B-spline approximation is a nonparametric method, which has been used to characterize the functional
relation between the response variable and explanatory variables without subjective setting a nonlinear
functional form. In the the area of numerical analysis, a B-spline or basis spline is a spline function, which
has a minimal support with respect to a given degree, smoothness, and domain partition. Any fixed-degree
spline function can be expressed as a linear combination of the B-spline with that degree. The B-spline
curve can be used for curve-fitting for a nonlinear data set. The advantage of using a B-spline curve is
given as follows: B-spline curve is a generalization of the Bézier curve. The B-spline uses polynomial
curve for establishment and requires the information regarding the degree of the curve, a knot vector and
a more complex theory than Bézier curves. A B-spline curve can be a Bézier curve. Moreover, the B-spline
curve satisfies all important properties that the Bézier curves has. The B-spline curve has more control
flexibility than the Bézier curve for modeling. For example, the user can use a lower degree B-spline curve
to maintain a large number of control points. The user can change the position of a control point without
globally changing the shape of the whole curve based on the local modification property. The B-spline
curve can provide a finer shape control due to it satisfies the strong convex hull property. Many techniques
for designing and editing the shape of a curve can be done such as changing the knots in a B-spline curve.

Chang and Yadama [2] used the B-spline approximation method to characterize the shape of
nonlinear profile and split the nonlinear profile into several sets to reduce the dimension of input
variables. After using dimension reduction techniques and doing data transformation, Chang and
Yadama [2] suggested using traditional control chart methods for monitoring nonlinear profile processes.
Chuang et al. [3] combined the B-spline approximation and control chart methods to develop a
nonparametric SPC method for monitoring profile data. Their monitoring method includes five steps: data
cleaning, fitting B-spline models, resampling for response data using block bootstrap method, constructing
the confidence band based on bootstrap curve depths, and monitoring profiles online based on curve
matching. Winistorfer et al. [4] used B-spline approximation and Wavelet transformation methods to
construct control charts for monitoring vertical density profile (VDP) data. The VDP is the density
distribution through the panel thickness to measure the quality of a wood-based composite panel about
its well with strength and physical properties. Woodall et al. [5] discussed some of the general profile
monitoring issues via using control chart methods. They also gave a comprehensive review for related
SPC literature about profile monitoring. Chang and Chou [6] provided a general discussion about
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using the Wavelet transformation and B-spline approximation methods for monitoring nonlinear profile
models. Hadidoust et al. [7] proposed a Phase II B-spline approximation monitoring method to detect the
change-point in a nonlinear profile process.

Fan et al. [8] suggested a Phase II nonlinear profile monitoring procedure via using the transformation
of the sum of sine functions. Their method can tackle complicated nonlinear functional form of profiles
through heavy numerical computation. Shiau et al. [9] aimed at constructing monitoring schemes for
the nonlinear profile model of random effects. They proposed to use principal component method to
obtain principal component scores and then use the principal component scores to construct Hotelling
T2 chart. Vaghefi et al. [10] proposed two approaches for monitoring nonlinear profile processes: the
first approach was to use control chart method with parametric estimates from a regression model as
inputs and the second approach was to use metrics to measure the deviation from a reference curve to
escape the complexity problems from the coefficient estimation of nonlinear profiles. Williams et al. [11]
used Hotelling T2 chart to monitor the coefficients of a parametric nonlinear regression model for a
profile process. They used three general formulation methods for the T2 statistics and suggested statistical
methods to determine the Phase I control limits. Boullosa-Falces et al. [12] studied the methods to detect
small and sudden deviations in the fuel oil process of marine diesel engine when the correlations between
input variables were low. They proposed a monitoring method to combine the Hotelling T2 and cumulative
sum (CUSUM) charts. The CUSUM chart is also a memory-type control chart, which is developed based
on the cumulative sum statistics.

Three concerns in current existing works on nonlinear profile monitoring in literature are stated as: (1)
the nonlinear profile model is complicated and difficult to be expressed as an explicit mathematical form
in some instances; (2) the existing control chart methods often assume that the error terms in a nonlinear
profile model are independent and follow a normal distribution; or (3) the current existing nonlinear profile
control chart could not detect process shift when the process shift is due to both the model parameters
and profile shape shift together. To enhance the applicability of the control chart methods, expanding
the normality assumption of error terms to a generalized distribution family is imperative. Moreover,
the proposed nonlinear profile control chart methods are expected more sensitive to alarm the process
shift on the model parameters or profile shape during the Phase II monitoring.

B-spline approximation methods are easy for implementation and can be used to fit a lot of nonlinear
profile models. In this study, the cubic B-spline curve is used to model nonlinear profile data and
then two integrated control charts are proposed for process monitoring. The first integrated chart is
to combine the Hotelling T2 chart and the mean absolute error (MAE) chart and named T2-MAE chart.
The second integrated chart is to combine the multivariate sign exponentially weighted moving average
(MSEWMA) chart and the MAE chart and named MS-MAE chart. Because both Hotelling T2 and MAE
charts are memoryless-type control charts and the MSEWMA chart is a memory-type control chart. Hence,
the T2-MAE method is composed of two memoryless-type control charts and the MS-MAE chart is
composed of one memory-type and one memoryless-type control charts. The Hotelling T2 chart is a
parametric control chart and the MSEWMA and MAE charts are nonparametric control charts.

The MSEWMA chart was originally proposed by Zou and Tsung [13]. They have shown the MSEWMA
chart has some appealing properties. The MSEWMA statistic is fast to compute and is affine invariant.
Moreover, for the distributions with elliptical directions, the charting sequence is a Markov chain process.
Then, the in-control average run length (ARL) can be evaluated. The ARL is the expected run length of the
interval between out-of-control events. The ARL in Phase I monitoring is a reference measure to design
control charts. Compared with the MEWMA chart, the MSEWMA chart is more robust for in-control
performance and more sensitive to the small and moderate shifts in location parameters for skewed and
heavy-tailed multivariate observations. Zi et al. [14] proposed a distribution-free robust procedure based
on using rank-based regression method to reduce the impact from the violation of multivariate normal
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distribution. Their proposed method is efficient to monitor linear profile processes. In this study, we use
Monte Carlo simulations to evaluate the performance of the proposed T2-MAE chart and MS-MAE chart,
and then the best control chart method is recommended to monitor nonlinear profile data.

The rest of this manuscript is organized as follows: The construction of the T2-MAE chart and
MS-MAE chart via using the cubic B-spline approximation method are studied in Section 2. In Section 3,
Monte Carlo simulations are conducted to verify whether the T2-MAE chart and MS-MAE chart can
be operated close to the nominal level of FAR during the Phase I monitoring. The performance of
the recommended control chart method for out-of-control Phase II monitoring is also evaluated using
simulations. The strengths and weaknesses of using the proposed control chart method and the deep
learning method of Autoencoder to monitor the quality of a nonlinear profile process are discussed, too.
Section 4 demonstrates the application of the recommended control chart method with a re-generated data
set for a real example regarding the VDP quality of particleboards. Some concluding remarks are given in
Section 5.

2. The B-Spline Approximation and Control Charts

2.1. B-Spline Approximation

To trace the mathematical notations used in the proposed control chart method, a list of mathematical
notations is given at the end of the paper for reference. Let Y and X denote the response and explanatory
variables, respectively. The realizations of data are denoted by (xji, yji), i = 1, 2, · · · ,nj in the jth profile
for j = 1, 2, · · · . The response variable yji can be expressed as a functional form of xji through the
following model:

yji = S(xji) + εji, i = 1, 2, · · · , nj, j = 1, 2, · · · , (1)

where S(·) is a nonlinear function, and εji is an random error. The explicit mathematical function form
of S(·) could be complicated and unable to be specified in practical applications. In this study, the error
terms are assumed to follow a skew-normal distribution (SND), its probability density function (PDF) can
be defined by

f (ε; µε, σ, λ) =
2
σ

φ

(
ε− µε

σ

)
Φ
(

λ
ε− µε

σ

)
, ε ∈ R, (2)

where µε ∈ R and σ > 0 are the location and scale parameters, respectively, and λ is the skewness
parameter, which controls the skewness of the SND, see Azzalini [15] and Su et al. [16]. The SPC
applications via using the SND for Shewhart control chart, economic control chart and control chart
for monitoring the quality of linear profile process can be found in Tsai [17], Li et al. [18], Su et al. [19],
and Li and Tsai [20]. Denote the SND by SN(µε, σ, λ) here and after. When λ = 0, SN(µε, σ, 0) reduces to a
normal distribution. The mean and variance of ε can be obtained by

E(ε) = µε + σ

√
2
π

λ√
1 + λ2

(3)

and

Var(ε) =
(

1− 2λ2

π(1 + λ2)

)
σ2, (4)

respectively. Let E(ε) = 0, it can be shown that µε = −σ
√

2
π

λ√
1+λ2 . The error terms are independent and

follow the SN(µε, σ, λ).
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In practice, an order-d B-spline function can be used to approximate the nonlinear function S(t). Let
p0, p1, · · · , pN denote (N + 1) control points, t0, t1, · · · , tN+d be N + d + 1 non-decreasing knots in the
range of t, and

{
Bi,d(t), i = 0, 1, 2, · · · , N

}
be a set of basis functions of order d, The nonlinear function

S(t) can be represented by

S(t) =
N

∑
i=0

piBi,d(t), N ≥ (d− 1), t ∈ [td−1, tN+1] , (5)

where

Bi,0(t) =

{
1, ti < t < ti+1

0, otherwise
(6)

Bi,d(t) =
t− ti

ti+d − ti
Bi,d−1(t) +

ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d−1(t), (7)

and 0
0 = 0 for the coefficients of Equation (7). The basis functions Bi,d(x),i = 0, 1, 2, · · · , N have the

following properties:

(i) Partition of unity:
N
∑

i=0
Bi,d(t) = 1.

(ii) Positivity: Bi,d(t) ≥ 0.
(iii) Local support: Bi.d(t) = 0 if x /∈ [ti, ti+d+1].
(iv) Continuity: the (d− 2)th derivation of Bi,d(t) is continuous.

Each knot span ti ≤ t ≤ ti+1 is mapped onto a polynomial between S(ti) and S(ti+1). Define knots
in the interval [a, b]. The first and last d knots are set to be t0 = t1 = · · · = td−1 = a and tN+1 = tN+2 =

· · · = tN+d = b, and the middle N − d + 1 knots can be chosen to be equidistant. The normalization of the
knots resulting in a = 0 and b = 1 is helpful to improve numerical accuracy in floating point arithmetic
computation. Because a cubic B-spline with d = 4 is sufficient to approximate most nonlinear curves
in realistic applications. In this study, the cubic B-spline method is used to approximate the nonlinear
function S(t). A comprehensive review for using R codes to implement cubic B-spline approximation can
be found in de Boor [21] and Perperoglou et al. [22]. Let m in-control profile data sets be collected as Phase
I samples. A multivariate control chart for monitoring nonlinear profile processes can be obtained through
the following two steps:

Step 1: Use a cubic B-spline to approximate S(·) in Model (1) and obtain the estimates of spline coefficients
and the predicted value of yji, ŷji for i = 1, 2, · · · , nj, j = 1, 2, · · · , m.

Step 2: The residuals can be obtained by ε̂ji = yji − ŷji, i = 1, 2, · · · , nj, j = 1, 2, · · · , m. Treat the residuals

ε̂i, i = 1, 2, · · · , nj from the jth profile as a random sample from SN
(
−σ
√

2
π

λ√
1+λ2 , σ, λ

)
and find

the maximum likelihood estimates (MLEs) of σ and λ for each profile and denoted them by σ̂j and
λ̂j , respectively, for j = 1, 2, , · · · , m. Let zT

j =
(
σ̂j, λ̂j

)
, j = 1, 2, · · · , m. Then a multivariate control

chart can be constructed based on the Phase I sample zj, j = 1, 2, · · · , m.

The Hotelling T2 chart and MSEWMA chart are used to develop the proposed monitoring methods.
The Hotelling T2 chart is a multivariate extension of the Shewhart-type X̄ chart, which is a memoryless-type
control chart. The MSEWMA chart is a nonparametric version of the MEWMA chart, which is a
memory-type control chart. In general, a memory-type control chart can alarm quicker for out-of-control
in Phase II than a memoryless-type control chart, and a parametric control chart is easier to establish than
a nonparametric control chart. However, if the normality assumption of the quality variables is violated,
then the FAR of the parametric control chart could be inflated and over the nominal level.
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2.2. The New Proposed Methods

Let the Phase I sample be zT
j =

(
σ̂j, λ̂j

)
, j = 1, 2, · · · , m,

z̄ =
m

∑
j=1

zj/m

and

Sz =
1
m

m

∑
j=1

(
zj − z̄

) (
zj − z̄

)T .

The Hotelling T2 statistics can be represented by

T2
i = (zi − z̄)T S−1

z (zi − z̄) , i = 1, 2, · · · . (8)

The control limit in Phase I is

LH =
(m− 1)2

m
κα,p/2,(m−p−1)/2, (9)

where κα,p/2,(m−p−1)/2 is the upper αth quantile of the beta distribution with parameters p/2 and (m−
p− 1)/2. The control limit in Phase II is

LH =
p(m + 1)(m− 1)

m2 −mp
Fα,p,m−p, (10)

where Fα,p,m−p is the upper αth quantile of the F distribution with degrees of freedom p and m− p. If m
is large, LH ∼= χ2

α,p, where χ2
α,p is the upper αth quantile of the chi-square distribution with degrees of

freedom p.
It is known that a memoryless-type control chart is insensitive to a small or moderate shift on the

process parameter. Among all memory-type control charts, the EWMA-type chart is easy to implement
and can quickly alarm for small to moderate shifts of the process parameter. The EWMA chart for
univariate process is insensitive to the violation of normality assumption; but the MEWMA chart, which is
a multivariate version of the EWMA control chart, is very sensitive to the violation of multivariate normal
distribution assumption. It is known that the FAR for the MEWMA chart will be inflated and over the
nominal level if the random vectors do not follow a multivariate normal distribution.

Because the domain of σ is R+ = {σ | σ > 0}, the vector of zT
j =

(
σ̂j, λ̂j

)
does not follow a bivariate

normal distribution. In this case, the MSEWMA chart proposed by Zou and Tsung [13] can be considered
to implement the process monitoring. The construction of the MSEWMA control chart is addressed as
follows: Let δi = zi − z̄, i = 1, 2, · · · , m. Two unknown parameters, the θ0 and A0, are needed to construct
MSEWMA statistics. They can be estimated based on the Phase I sample {δi, i = 1, 2, · · · , m}. Let

vi =
A0(δi − θ0)

‖A0(δi − θ0)‖
, i = 1, 2, · · · , m. (11)

The MSEWMA series can be defined by

wi = (1− ξ)wi−1 + ξvi, i = 1, 2, · · · , (12)



Mathematics 2020, 8, 1588 7 of 20

where v0 = 0 is the initial value and 0 < ξ < 1 is a constant. In general, ξ = 0.1 and 0.2 are two widely
used parameters for implementing the MSEWMA chart. Based on the MSEWMA series in Equation (12),
the MSEWMA statistic can be defined by

Qi =
2− ξ

ξ
pwT

i wi, i = 1, 2, · · · (13)

The process is claimed as out-of-control if Qi > LM. The LM is a positive control limit. Zou and
Tsung [13] have provided tables to report the reference values of LM, those reference values were obtained
by simulations.

Let θ̂0 and Â0 be the estimates of θ0 and A0, respectively. The values of θ̂0 and Â0 can be searched
based on the iterations proposed by Hettmansperger and Randles [23].

Step 1: Obtain the initial value of θ̂ by

θ̂
(0)
0 = arg min

θ

m

∑
i=1
‖δi − θ‖ . (14)

Step 2: For iteration l = 0, 1, 2, · · · , search the value of Â(l)
0 that satisfies Equation (15), given θ̂

(l)
0 :

1
m

m

∑
i=1

A(l)
0 (δi − θ̂

(l)
0 )(δi − θ̂

(l)
0 )T AT(l)

0∥∥∥A(l)
0 (δi − θ̂

(l)
0 )
∥∥∥2

 =
1
p

Ip. (15)

In practical applications, the value of Â(l)
0 can be searched based on the Step(a)-Step(e), see Tyler [24]:

Step (a): Let initial value of Ω be Ω = Ip.

Step (b): Evaluate the value of Ωx by Ωx =
[

p
trace(Ω)

]
Ω.

Step (c): Choose the value of AΩ such that the condition AT
Ω AΩ = Ω−1

x is true by using Cholesky
decomposition method for the positive definite matrix Ω−1

x .
Stpe (d): Update Ω by

Ω← pΩ
1
2

1
m

m

∑
i=1

 AΩ

(
δi − θ̂

(l)
0

)
∥∥∥AΩ

(
δi − θ̂

(l)
0

)∥∥∥
 AΩ

(
δi − θ̂

(l)
0

)
∥∥∥AΩ

(
δi − θ̂

(l)
0

)∥∥∥
T

Ω
1
2 . (16)

Stpe (e): Repeat the Steps (b) to (d) until convergence.

Step 3: Update θ̂0 by θ
(l+1)
0 =

[
A(l)

0

]−1
θδ,

θδ = arg min
θ

m

∑
i=1
‖Di − θ‖ , (17)

where Di = A(l)
0 δi, i = 1, 2, · · · , m.
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Step 4: Let l = l + 1. Repeat Step 2 to Step 3 until∥∥∥θ̂
(l)
0 − θ̂

(
0l − 1)

∥∥∥∥∥∥θ̂
(l−1)
0

∥∥∥ ≤ e, (18)

where e is a predetermined small positive number. The vales of θ̂
(l)
0 and Â(l)

0 at the final iteration
when the algorithm is stopped can be the θ̂0 and Â0, respectively.

The MSEWMA chart and Hotelling T2 chart are insensitive to the shift on the profile shape. Hence,
we suggest to integrate the MSEWMA chart (or Hotelling T2 chart) with the MAE chart, and name the
new integrated chart by MS-MAE chart (or T2-MAE chart). The MAE for profile j is defined by

η̂j =
∑n

i=1
∣∣ε̂ji
∣∣

n
, j = 1, 2, · · · , m. (19)

Let the upper control limit of the MAE chart be qα, which is the upper αth quantile such that P(η̂ > qα) = α.
In practice, we can use the empirical distribution of

{
η̂j, j = 1, 2, · · · , m

}
to obtain an approximated value

of qα when m is large. Let the FARs of the MSEWMA (or Hotelling T2) and MAE charts be α1 and α2,
respectively. Then, the overall FAR can be α = (1− α1)(1− α2); that is, we can select the values of α1

and α2 to maintain the overall FAR at the desired level. For example, if we can take α1 = α2 = 0.0027
to construct the proposed MS-MAE chart or T2-MAE chart, the overall FAR of the integrated chart is
α = 0.0054. The corresponding ARL for the in-control Phase I process is about 185. The two integrated
control charts can be implemented through using the following Step 1 to Step 4:

Step 1: Obtain the estimates of {zT
j = (σ̂j, λ̂j), j = 1, 2, ..., m} and the residuals {ε̂ij, i = 1, 2, ..., n, j =

1, 2, ..., m} based on m in-control Phase I subgroups by using the proposed estimation method in
Section 2.1.

Step 2: Obtain the Hotelling T2 series based on Equation (8) and obtain the mean residuals, {η̂j, j =
1, 2, ..., m}, based on Equation (19).

Step 3: The first control chart in the integrated control chart can be the Hotelling T2 chart or MSEWMA
chart. The second control chart in the integrated control chart is the MAE chart. Let the FAR
in the first and second control charts are α1 and α2, respectively, and the overall FAR is α =

(1− α1)(1− α2).

Step 3.1: The control limits in Equations (9) and (10) with FAR = α1 can be used to establish the
Hotelling T2.

Step 3.2: The control limit of the MSEWMA chart with FAR = α1 can be selected from the
tables proposed by Zou and Tsung [13] or we can search the control limit via using
simulation methods.

Step 3.3: The quantile, qα2 , based on the empirical distribution of η̂ can be obtained as the control
limit of MAE chart.

Step 4: The T2-MAE chart is to integrate the Hotelling T2 and MAE charts in Step 3 and the MS-MAE
chart is to integrate the MSEWMA and MAE charts in Step 3.
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3. Monte Carlo Simulations and Discussions

3.1. Performance Evaluation

The R language codes with the packages of “sn”, “splines” and “optim” are used to generate random
samples from the SND, implement the B-spline approximation and obtain the estimates of the model
parameters, respectively. After the proposed two integrated control charts are established, a simulation
study is conducted with has two goals. The Goal 1 is to study whether the proposed integrated control
charts of the T2-MAE chart and MS-MAE chart can be maintained at the nominal FAR level for the
in-control Phase I monitoring. The Goal 2 is to study the speed to alarm of the recommended integrated
control chart for parameter shifts in Phase II monitoring when the process is out of control. Nonlinear
profile data are simulated using Equation (20), which was proposed in Noorossana et al. [25] for the
VDP data:

S(xji) =

{
θ1(xji − c)θ3 + θ6, xji > θ5,

θ2(−xji + c)θ4 + θ6, xji ≤ θ5,
(20)

for i = 1, 2, · · · , n and j = 1, 2, · · · , m. The total 24 sets of (θ1, θ2, θ3, θ4, θ5, θ6) given by Noorossana et al. [25]
are used to generate nonlinear profiles, we take the median of each set of θh for h = 1, 2, · · · , 6 to
generate the reference nonlinear profile for simulations in this section, and the parameters used to
generate the reference nonlinear profile are θ1 = 3506, θ2 = 2561, θ3 = 4.855, θ4 = 4.125, θ5 = 0.3
and θ6 = 44.455. Following the suggestions of Noorossana et al. [25], Equations (1) and (2) with x =

0, 0.02, 0.04, 0.006, · · ·, 0.626, σ = 2 and λ = 3 are used to generate total nj = 314 pairs of (xij, yij) for
profile j. Each generated data set can be used to obtain one vector of zT = (σ̂, λ̂) and one η̂. All zj and
η̂j, j = 1, · · · , m, are used to construct the T2-MAE and MS-MAE charts with the FARs α1 = α2 = 0.0027.
Hence, the overall FAR for two integrated control charts are α = 0.0054. The nominal in-control Phase I
ARL is about 185, denoted by ARL0 = 185.

Figure 1 reports the simulated values of ARL0 of the MS-MAE chart with ξ = 0.2 and the T2-MAE
chart. Figure 1 shows that the simulated ARL0 of the MS-MAE chart is very closed to the nominal value
when the number of samples m ≥ 800. However, the simulated ARL0 of the T2-MAE chart always
seriously underestimates the nominal ARL0 even the number of samples increases to 2000. It is found
that the Hotelling T2 chart has more false alarms than the MAE chart. Because the input vectors of zj do
not follow a bivariate normal distribution, the T2-MAE chart causes more false alarms for monitoring the
parameter estimates than the expectation. Hence,the T2-MAE chart is not a suitable tool for monitoring
nonlinear profile data in this study. We recommend using the MS-MAE chart to monitor nonlinear profile
processes. Hence, only the ability of the MS-MAE chart for detecting process shifts in Phase II is studied in
the following simulations.
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Figure 1. The simulated values of ARL0 for the MS-MAE chart (solid line) and T2-MAE chart (dash line).

For generating out-of-control profile data to evaluate the performance of the MS-MAE chart to capture
the shift of the curve at different profile locations, 10,000 data sets, (xji, yji), i = 1, 2, · · · , 1000, j = 1, 2, · · · ,
10,000, are generated based on Equation (20). Then all generated data set are fitted by Model (21) via using
the package splines of the software R, where β0, β1, · · ·, β7 are parameters and Bh(x), h = 1, 2, · · · , 7 are
basis functions in the cubic B-spline approximation method.

Yji = β0 + β1B1(x) + β2B2(x) + · · ·+ β7B7(x) + ε (21)

Let βT = (β0, β1, · · · , β7) and the estimate of β based on the jth data set
{
(xji, yji), i = 1, 2, · · · , 1000

}
be denoted by β̂j, j = 1, 2, · · · , 10,000. In the following simulation study, we use the mean vector,

γT = 1
10,000 ∑10,000

j=1 β̂j
T
= (γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7), as the in-control vector of nominal parameters for

the nonlinear profile model. Ten scenarios of profile shifts, labeled by Shift 1 to Shift 10 and given as
follows, are considered for Phase II monitoring:
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Shift 1: γ(1) = (γ0, 0.98× γ1, 0.98× γ2, γ3, γ4, γ5, γ6, γ7)
Shift 2: γ(2) = (γ0, γ1, 0.98× γ2, 0.98× γ3, γ4, γ5, γ6, γ7)
Shift 3: γ(3) = (γ0, γ1, γ2, 0.98× γ3, 0.98× γ4, γ5, γ6, γ7)
Shift 4: γ(4) = (γ0, γ1, γ2, γ3, 0.98× γ4, 0.98× γ5, γ6, γ7)
Shift 5: γ(5) = (γ0, γ1, γ2, γ3, γ4, 0.98× γ5, 0.98× γ6, γ7)
Shift 6: γ(6) = (γ0, 1.02× γ1, 1.02× γ2, γ3, γ4, γ5, γ6, γ7)
Shift 7: γ(7) = (γ0, γ1, 1.02× γ2, 1.02× γ3, γ4, γ5, γ6, γ7)
Shift 8: γ(8) = (γ0, γ1, γ2, 1.02× γ3, 1.02× γ4, γ5, γ6, γ7)
Shift 9: γ(9) = (γ0, γ1, γ2, γ3, 1.02× γ4, 1.02× γ5, γ6, γ7)
Shift 10: γ(10) = (γ0, γ1, γ2, γ3, γ4, 1.02× γ5, 1.02× γ6, γ7)

Figure 2 shows the positions of profile shape shift. Shift 1 to Shift 5 indicate that the curve shifts
to its inside at different locations of the reference profile, and Shift 6 to Shift 10 indicate that the curve
shifts to its outside at different locations of the reference profile. Shift 1 and Shift 6 indicate that the curve
shifts at the upper-side arm of the reference profile; Shift 2 and Shift 7 indicate that the curve shifts at
the middle bottom of the reference profile; Shift 3 and Shift 9 indicate that the curve shifts at the right
bottom the reference profile; and Shift 4 and Shift 10 indicate that the curve shifts at the left bottom of the
reference profile.

The control limits of the MS-MAE chart is obtained with the FARs α1 = α2 = 0.0027 and the overall
FAR can be maintained at α = 0.0054. The ARL in Phase II to alarm an out-of-control case is labeled as
ARL1, which is evaluated based on 10,000 runs of simulation for each of the combinations of the SND
parameters (σ, λ) =(1,1),(1,3), (3,1), (3,3), (5,1) and (5,3), respectively. The smaller the ARL1 is, the better of
the ability of the control chart to alarm an out-of-control signal. Moreover, the corresponding standard
deviation of run length (SDRL) for each shift, from Shift 1 to Shift 10, is respectively evaluated based on
10,000 simulation runs, too. All simulation results are reported in Table 1 for ξ = 0.1 and in Table 2 for
ξ = 0.2.

In view of Tables 1 and 2, it can be noticed that the proposed MS-MAE chart is sensitive to alarm the
shift at different locations of the reference curve with a short ARL1. When the scale parameter of the SND
is large or the SND is highly skewed, the ability of the MS-MAE chart to alarm out-of-control is reduced.
When σ or λ in the SND become large, the MS-MAE chart needs more time or a longer ARL1 to alarm
out of control in Phase II. Moreover, Tables 1 and 2 also show that the MS-MAE chart with ξ = 0.1 and
MS-MAE chart with ξ = 0.2 are competitive. Both charts have two close values of ARL1 to alarm process
shifts for the same parameter combination of σ and λ. The SDRL in Tables 1 and 2 are also close for the
same parameter combination of σ and λ. Overall, the MS-MAE chart with ξ = 0.1 can alarm out of control
a little quicker than the MS-MAE chart with ξ = 0.2.
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Figure 2. The reference profile (solid line) and the out-of-control profile (dash line) (a) Shift 1 (b) Shift 2
(c) Shift 3 (d) Shift 4 (e) Shift 5 (f) Shift 6 (g) Shift 7 (h) Shift 8 (i) Shift 9 (j) Shift 10.

Table 1. The ARL1 and SDRL of the MS-MAE chart for different combinations of σ, λ and ξ = 0.1.

(σ, λ)

(1,1) (1,3) (3,1) (3,3) (5,1) (5,3)

Shift 1 ARL1 3.8412 2.3802 7.7024 13.1864 12.2773 40.5034
SDRL 2.2930 0.7246 1.3110 4.3776 4.9731 30.9255

Shift 2 ARL1 2.0835 2.0009 7.4032 10.7722 11.7010 29.1175
SDRL 0.3009 0.0300 1.6210 4.9118 5.0599 23.0682

Shift 3 ARL1 2.0289 2.0005 7.2282 9.5635 11.4067 26.2756
SDRL 0.1757 0.0224 1.7408 4.8439 5.0496 20.6749

Shift 4 ARL1 2.0840 2.0017 7.4103 10.6689 11.5696 29.1012
SDRL 0.3046 0.0412 1.6292 4.8818 5.0152 23.1551

Shift 5 ARL1 3.3459 2.2565 7.6737 13.0108 12.2735 39.3576
SDRL 1.7959 0.5686 1.3659 4.4637 5.0878 30.4337

Shift 6 ARL1 3.8125 2.3554 7.6941 13.2833 12.3074 40.7550
SDRL 2.2551 0.6813 1.2853 4.3092 4.9909 31.5401

Shift 7 ARL1 2.0853 2.0018 7.3737 10.7119 11.7145 30.4102
SDRL 0.3020 0.0424 1.6213 4.8313 5.1583 23.8104

Shift 8 ARL1 2.0331 2.0003 7.2480 9.5152 11.4173 27.1037
SDRL 0.1866 0.0173 1.7236 4.7609 5.0859 21.2876

Shift 9 ARL1 2.0797 2.0023 7.3797 10.7447 11.6904 30.7924
SDRL 0.2939 0.0479 1.6091 4.8852 5.0775 23.7903

Shift 10 ARL1 3.3841 2.2383 7.6936 13.2156 12.2797 40.9350
SDRL 1.7945 0.5373 1.3583 4.4369 5.0288 31.8419
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Table 2. The ARL1 and SDRL of the MS-MAE chart for different combinations of σ, λ and ξ = 0.2.

(σ, λ)

(1,1) (1,3) (3,1) (3,3) (5,1) (5,3)

Shift 1 ARL1 4.1565 2.6312 6.4459 11.9355 15.2565 44.0534
SDRL 2.6307 1.0141 1.4416 5.7643 8.7400 38.9507

Shift 2 ARL1 2.1123 2.0045 6.0158 8.5698 14.5249 28.9411
SDRL 0.3520 0.0669 1.7091 4.8396 8.3630 25.5944

Shift 3 ARL1 2.0360 2.0004 5.7817 7.3016 14.2728 24.3020
SDRL 0.1932 0.0200 1.8407 4.4238 8.4304 21.2048

Shift 4 ARL1 2.1066 2.0047 6.0167 8.5518 14.5316 28.0087
SDRL 0.3462 0.0684 1.7050 4.8475 8.2793 24.8782

Shift 5 ARL1 3.7319 2.4397 6.4609 11.7575 15.1310 43.0275
SDRL 2.1750 0.7979 1.4777 5.7632 8.8302 38.6364

Shift 6 ARL1 4.2259 2.6179 6.4738 12.0545 15.2113 45.7271
SDRL 2.6815 1.0208 1.4308 5.8186 8.6970 40.0272

Shift 7 ARL1 2.1157 2.0058 6.0187 8.5165 14.5941 29.7988
SDRL 0.3607 0.0759 1.7339 4.8585 8.3315 26.3605

Shift 8 ARL1 2.0373 2.0006 5.7978 7.2286 14.3202 25.5466
SDRL 0.1957 0.0245 1.8242 4.2111 8.1342 22.2157

Shift 9 ARL1 2.1107 2.0046 6.0441 8.5784 14.7236 29.8490
SDRL 0.3476 0.0677 1.7032 4.7884 8.5263 26.1232

Shift 10 ARL1 3.7231 2.4397 6.4618 11.7864 15.1848 43.5996
SDRL 2.1656 0.7994 1.4660 5.6724 8.6189 39.0241

3.2. Discussions

Today, deep learning methods have earned more attention in machine learning applications.
Deep learning refers to multi-layer neural networks, which can learn complex patterns for pattern
recognition. If we treat the control chart method as an issue of pattern recognition, the deep leaning
methods are competitive with the proposed control chart method. The Autoencoder is one popular deep
learning method in an unsupervised manner. The Autoencoder can be used to learn a representation of
encoding for a data set via training the network to ignore the signal of noise for dimensionality reduction.
A reconstructing side is learnt from the reduction side, in which the Autoencoder tries to copy its input
to its output to maintain the representation as close as possible to its input. An internal or hidden layer
in an Autoencoder can be used to describe a code for representing the input, and it is composed of two
main parts: an encoder and decoder for mapping the input into the code and mapping the code into a
reconstruction of the input, respectively. The idea of Autoencoder has been widely applied in neural
networks for deep learning in the past few decades.

As other deep learning algorithms, the Autoencoder requires large amounts of data for training via
intensive computation. Moreover, the Autoencoder requires much more expertise to set the architecture
and hyper-parameters. Hence, the Autoencoder could be unsuitable as a general-purpose algorithm.
In many occasions of quality control, it could be difficult to offer large amounts of data for training model
in a deep learning algorithm due to the considerations of sampling cost, destructive testing or other reasons.
The proposed control chart method uses a cubic B-spline curve to characterize nonlinear profile data and
monitor the quality of a process via using an integrated control chart. The proposed control chart method
could be less effective than the Autoencoder algorithm to process a broad nonlinear functions. However,
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the proposed control chart method requires less sample resource to obtain reliable monitoring results than
using a machine learning method. As we have mentioned in the literature review in Section 1, the cubic
B-spline function has been proved to well approximate a lot of nonlinear functions in quality control
applications. When the sample resource is limited for training model, the proposed control chart method
is competitive for monitoring the quality of a nonlinear profile process. If large amounts of data can be
offered by a nonlinear profile process for training model, the Autoencoder algorithm can be considered
to replace the proposed control chart method for process monitoring. By the way, how to conduct a
diagnostic process for identifying the causes of out of control via using a deep learning algorithm for
process monitoring is still an open question in SPC.

4. An Application

In this section, an example regarding monitoring the quality of particle boards is used for illustration.
The VDP through the panel thickness has been identified as an important panel characteristic, which
is related to the strength and physical properties of particleboards. A profilometer is used to monitor
the density of the finished particle boards over time at fixed depths across the thickness of the particle
board during the manufacturing of particle boards. Density measurements for the VDP data were taken at
depths xi = 0.002× i, i = 0, 1, · · · , 313 to give a sample of (xji, yji), i = 1, 2, · · · , n, j = 1, 2, · · · , m.

Because we do not have the original data set, the process proposed by Noorossana et al. [25] is followed
to generate VDP data sets for illustration. Equation (21) with the obtained γ in Section 3, based on in-control
Phase I samples with σ = 1 and λ = 3, is used to generate 50 in-control Phase I nonlinear profiles, and we
use γ∗ = (γ0, 1.05× γ1, 1.02× γ2, γ3, γ4, γ5, γ6, γ7) to generate additional 25 out-of-control profiles; that is,
the SND parameters of σ and λ do not shift, but the profile shape shifts at its right side as that in Figure 2g.
Using the FARs α1 = α2 = 0.0027 and α = 0.0054 for the in-control Phase I monitoring, the numerical
control limits LM = 8.567 and LA = 0.144 can be obtained via using simulations for the MS-MAE chart
with ξ = 0.2. The MS-MAE chart for this data set is given in Figure 3. The MSEWMA control chart in
the MS-MAE method is used to monitor the parameters σ and λ, and the MAE control chart is used to
monitor the shift on the profile shape.The MS-MAE chart triggers a signal for out of control at profile
52, and then several out-of-control signals follow. In scan of Figure 3, we find that the MSEWMA chart
does not alarm for out of control but the MAE chart triggers out-of-control signals at profile 52 and after.
Therefore, the MS-MAE chart can quickly alarm out-of-control in this example.
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Figure 3. The MS-MAE chart for the VDP data set.

5. Concluding Remarks

In this study, two new integrated control charts, the T2-MAE chart and MS-MAE chart, are proposed
to monitor nonlinear profile data when the mathematical form of the nonlinear profile model is complicated
and unable to be specified. Moreover, the error terms in the nonlinear profile model are assumed to follow a
SND, which is a generalized version of the normal distribution. The cubic B-spline approximation method
is used for modeling the profile data, and the residuals are used to obtain the MLEs of the SND parameters.

Monte Carlo simulations are conducted to verify the performance of the proposed T2-MAE chart and
MS-MAE chart. The simulation results have shown that the T2-MAE chart was unable to perform well due
to the input vector of the MLEs of the SND parameters does not follow a bivariate normal distribution.
The FAR of the T2-MAE chart highly overestimates the nominal value of the FAR in the Phase I monitoring.
The MS-MAE chart is more reliable than the T2-MAE chart. Moreover, the MS-MAE chart is sensitive to
alarm the process shifts on the distribution parameters or profile shape. The re-generated VDP data sets of
particle boards have been used to show that the proposed MS-MAE chart can quickly alarm out of control
in Phase II monitoring. If large amounts of data can be offered by a production process for training model,
the deep learning method via using the Autoencoder algorithm can be considered to replace the proposed
control chart method for process monitoring.

This study focuses on providing a general control chart method to monitor the quality of a nonlinear
profile process. The VDP data is used for illustration. However, the proposed method can be used to
monitor any nonlinear profile process with data that can be characterized via using a cubic B-spline
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approximation. In view of the simulation results, the parameter estimation for the SND was found not
stable if the sample size in each profile is small. How to obtain reliable parameter estimation for the
SND via using other algorithms is an open question. It also is important to reduce the sample resource
to establish the MSEWMA chart in the proposed control chart method. Some machine learning methods
are also competitive for the process monitoring purpose. However, the sample resource limitation is a
problem for many production processes. How to conduct a efficient diagnostic process for identifying the
out-of-control causes via using a deep learning algorithm for process monitoring is still an open question
in SPC. It is also important to design a new control chart based on the economical purposes or conditions
for monitoring the quality of a process. These topics will be studied in the future.
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Abbreviations

Mathematical notations

Y, yij response variables
X, xji explanatory variables
S(·) nonlinear function
εji random error
nj the number of points in profile j
f (·) probability density function
µε, σ, λ the location, scale and skewness parameters of the SND
R, R+ real number and positive real number
pi control point in B-spline function
t, ti non-decreasing knots
d the order of basis function
Bi,d(t) the basis function of order d in B-spline function
a, b the end points of an interval
ŷij the predicted value of yij
ε̂ij residuals
m the number of subgroups in Phase I
zT

j the vector of (σ̂j, λ̂j)

z̄
m
∑

j=1
zj/m

Sz
1
m

m
∑

j=1

(
zj − z̄

)
(zj − z̄)T

T2
i (zi − z̄)T S−1

z (zi − z̄)
LH The control limit of the control chart based on Hotelling T2 statistics
α, αi false alarm rates
p the dimension of an input vector
κα,p/2,(m−p−1)/2 the upper αth quantile of the beta distribution with degrees of freedom p/2 and (m− p− 1)/2
Fα,p,m−p the upper αth quantile of the F distribution with degrees of freedom p and m− p
χ2

α,p the upper αth quantile of the chi-square distribution with degrees of freedom p
δi zi − z̄
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ωi, i = 1, 2, ... MSEWMA series
A0, Â0 a matrix of unknown constants to construct a MSEWMA series and the estimate of A0

ξ, θ0, θ̂0 the constants in MSEWMA series and the estimate of θ0

Qi
2−ξ

ξ pwT
i wi

Ip identity matrix of order p
Ωx, AΩ matrices to obtain Â0 and θ̂0

Di, θδ vector to obtain θ̂0

e a threshold of error to reach convergence

η̂j ∑n
i=1

∣∣∣ε̂ji

∣∣∣/n

qα the upper αth quantile of the sampling distribution of η̂

θ1, ..., θ6 the coefficients of S(xji) for VDP data
βi, β coefficients in the cubic B-spline model for VDP data; βT = (β0, β1, · · · , β7)

γT ∑10,000
j=1 β̂

T
j = (γ0, γ2, · · · , γ7)
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